Indian Journal of Radiology and Imaging Indian Journal of Radiology and Imaging

NEURORADIOLOGY
Year
: 2015  |  Volume : 25  |  Issue : 4  |  Page : 445--452

Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner


Zarina Abdul Assis1, Jitender Saini2, Manish Ranjan3, Arun Kumar Gupta2, Paramveer Sabharwal2, Purushotham R Naidu4 
1 Department of Radiology, Sri Sathya Sai Institute of Higher Medicial Sciences, Bangalore, Karnataka, India
2 Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
3 Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
4 Senior Medical Advisor, Biocon Ltd, Bangalore, Karnataka, India

Correspondence Address:
Zarina Abdul Assis
Department of Radiology, Sri Sathya Sai Institute of Higher Medical Sciences, EPIP Area, Whitefeild, Bangalore - 560 066, Karnataka
India

Context: Primary intracranial tumors in children are commonly located in the posterior fossa. Conventional MRI offers limited information regarding the histopathological type of tumor which is essential for better patient management. Aims: The purpose of the study was to evaluate the usefulness of advanced MR imaging techniques like diffusion tensor imaging (DTI) in distinguishing the various histopathological types of posterior fossa tumors in children. Settings and Design: DTI was performed on a 3T MRI scanner in 34 untreated children found to have posterior fossa lesions. Materials and Methods: Using third party software, various DTI parameters [apparent diffusion coefficient (ADC), fractional anisotropy (FA), radial diffusivity, planar index, spherical index, and linear index] were calculated for the lesion. Statistical Analysis Used: Data were subjected to statistical analysis [analysis of variance (ANOVA)] using SPSS 15.0 software. Results: We observed significant correlation (P < 0.01) between ADC mean and maximum, followed by radial diffusivity (RD) with the histopathological types of the lesions. Rest of the DTI parameters did not show any significant correlation in our study. Conclusions: The results of our study support the hypothesis that most cellular tumors and those with greater nuclear area like medulloblastoma would have the lowest ADC values, as compared to less cellular tumors like pilocytic astrocytoma.


How to cite this article:
Assis ZA, Saini J, Ranjan M, Gupta AK, Sabharwal P, Naidu PR. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner.Indian J Radiol Imaging 2015;25:445-452


How to cite this URL:
Assis ZA, Saini J, Ranjan M, Gupta AK, Sabharwal P, Naidu PR. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner. Indian J Radiol Imaging [serial online] 2015 [cited 2020 Apr 7 ];25:445-452
Available from: http://www.ijri.org/article.asp?issn=0971-3026;year=2015;volume=25;issue=4;spage=445;epage=452;aulast=Assis;type=0