Indian Journal of Radiology Indian Journal of Radiology  

   Login   | Users online: 2972

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size     

 

 Table of Contents    
VASCULAR AND INTERVENTIONAL RADIOLOGY  
Year : 2015  |  Volume : 25  |  Issue : 4  |  Page : 375-379
Beyond warfarin: The advent of new oral anticoagulants


Deaprtment of Radiology, University of Iowa Hospitals and Clinic, Iowa City, Iowa, USA

Click here for correspondence address and email

Date of Web Publication12-Nov-2015
 

   Abstract 


New oral anticoagulants (NOAC) are the latest addition to anticoagulant armamentarium. Unlike traditional anti-coagulants like warfarin, lab monitoring and management of bleeding complications secondary to these agents is different. As more and more patients are being switched to these drugs, interventional radiologists in particular will benefit from a clinical review of NOAC.

Keywords: Anticoagulants; new oral anticoagulants; warfarin

How to cite this article:
Laroia ST, Morales S, Laroia AT. Beyond warfarin: The advent of new oral anticoagulants. Indian J Radiol Imaging 2015;25:375-9

How to cite this URL:
Laroia ST, Morales S, Laroia AT. Beyond warfarin: The advent of new oral anticoagulants. Indian J Radiol Imaging [serial online] 2015 [cited 2019 Oct 18];25:375-9. Available from: http://www.ijri.org/text.asp?2015/25/4/375/169459



   Introduction Top


For more than half a century, warfarin has been the most widely used oral anticoagulant in clinical practice. Its common use, side effects profile, and reversal techniques have been well established, making it a familiar drug in interventional practices with an overwhelming majority of practitioners being comfortable with its use.

Recently, three new oral anticoagulants (NOACs) have been introduced; while they are becoming more common to the clinical practices, they remain a gray area in the interventional community due to limited exposure.

As these drugs have become more widely prescribed, we must become familiar with their mechanism of action, dosing strategies, and potential complications in order to provide our patients with the safest care possible. In this article, we present these new agents with emphasis on their clinical use, potential dangers during invasive procedure, and how to deal with these complications as they arise.


   Current Noacs Top


Dabigatran (Pradaxa ®) - Boehringer Ingelheim

Rivaroxaban (Xarelto ®) - Janssen

Apixaban (Eliquis ®) - Bristol-Myers Squibb


   Mechanism of Action Top


Currently, there are two mechanisms of action for NOACs:

  • Direct inhibition of thrombin: Dabigatran works by binding to the active site of thrombin and the inactive form of fibrin-bound thrombin. An interesting characteristic of Dabigatran is its partially intrinsic coagulation reversibility; by quickly dissociating from its site of action, Dabigatran leaves a small amount of enzymatically active thrombin in the serum, which is potentially available for coagulation reversal [1],[2],[3],[4]
  • Inhibition of factor Xa: Rivaroxaban and Apixaban work by blocking the interaction of factor Xa with factor Va [Figure 1] on the surface of activated platelets, thereby blocking the formation of the prothrombinase complex which converts prothrombin to thrombin. By blocking this pathway, the generation of fibrin is inhibited.[5]


These mechanisms are in contrast to that of warfarin, which inhibits the activity of the vitamin K–dependent coagulation factors (II, VII, IX, X); this effect is achieved by warfarin's interference with the conversion of vitamin K to its epoxide, which is needed to carboxylate glutamate residues on the vitamin K–dependent clotting factors. By inhibiting carboxylation, the liver then produces coagulation factors with reduced procoagulant activity. Also, proteins C and S, which are natural anticoagulants, are inhibited by warfarin, which explains the need to bridge with heparin or low-molecular-weight heparin (LMWH) when starting warfarin.[6]
Figure 1: Mechanism of action of NOACs

Click here to view



   Advantages of Noac Use Top


It is well known that tight control of the international normalized ratio (INR) is the key to the success of warfarin therapy; however, controlling patients' INR can be a challenge. It has been estimated that INR levels are therapeutic only 50% of the time.[7],[8],[9] One of the most attractive features of these new agents is that they have been shown to equal, if not superior, to warfarin in the management of conditions such as (VTE) Venous Thromboembolism and atrial fibrillation related stroke.There is also a lower incidence of intracranial bleeding with NOAC use in comparison to warfarin; so, there is no need for regular laboratory monitoring while using NOAC.[10],[11],[12],[13],[14],[15],[16] In addition, therapy can be started immediately without the need for heparin or LMWH bridging. These advantages have led many physicians to reach for NOACs as first-line agents.


   Limitations Top


One major limitation of NOAC use is the lack of a known reversal agent, which is particularly problematic in the actively bleeding patient. Several proposals have been made for a reliable reversal agent; however, this has yet to be determined. These will be discussed later.

Although Dabigatran and Apixaban have been found to have lower rates of intracranial bleeding than that associated with warfarin therapy, they have twice the risk of causing major gastrointestinal (GI) bleeding.[17]


   Pharmacokinetics Top


As a generalization, NOACs start peaking within 2 h of administration, with an average half-life of around 12 h. Dabigatran is only 35% protein bound in the plasma, as compared to Apixaban and Rivaroxaban which are 85% protein bound. In elderly patients, the half-life of Rivaroxaban is prolonged from 5-9 h to 11-13 h. Dabigatran and Rivaroxaban are excreted primarily through the urine, while Apixaban is predominantly eliminated through the fecal route.[5]


   Drug Interactions Top


Strong P-glycoprotein inhibitors (amiodarone, verapamil, quinidine, clarithromycin) should be used with caution in patients on Dabigatran, as these drugs have the potential to increase the serum levels of Dabigatran. On the flipside, an advantage of Dabigatran is that there is no effect on CYP pathway, which is a classic concern with warfarin. Interactions with P-glycoprotein and CYP 3A4 inhibitor occur in the case of Rivaroxaban; therefore, caution should be taken when patients are receiving drugs such as ketoconazole, voriconazole, and ritonavir, as they may increase the anticoagulation effect. Finally, there has been low potential for drug interactions with Apixaban; however, it is suggested that caution be taken with CYP inhibitors. There are no known food interactions for any of these drugs.[5],[18],[19],[20]


   Challenges of Using Noacs Top


In contrast to warfarin, there is no specific reversal agent that can be used for managing a bleeding diathesis that results from NOAC use. These drugs are not routinely monitored, which leads to an increased risk of unwanted elevation of serum levels and the associated risk of hemorrhage. Although there are laboratory evaluations available that indirectly monitor NOAC activity, they are very complex and time consuming. These are discussed in further detail below.


   Laboratory Evaluation Top


There is currently no gold standard for laboratory evaluation of these drugs. However, the following tests, although cumbersome, are currently available:

Thrombin time and activated partial thromboplastin time

These tests are sensitive to the systemic presence of Dabigatran, but cannot quantify the levels; in fact, the aPTT plateaus with higher levels of Dabigatran. Although not fool proof, these tests offer rapid results that may assist in determining if bleeding is secondary to Dabigatran or another entity.[20],[21]

Ecarin clotting time

This test uses snake venom to measure direct thrombin inhibitors like Dabigatran, but not the factor Xa inhibitors. The test, however, has a limited availability.[19],[22],[23]

Assays of factor Xa activity

A variety of assays have been proposed and the basic principle is the same as those used for monitoring heparin levels. Laboratories that are currently using these assays to monitor heparin levels can be adapted to apply these techniques for monitoring Rivaroxaban and Apixaban, as they are better indicators of plasma concentrations of these particular drugs.[19],[23]

Rivaroxaban prolongs prothrombin time (PT), PT, aPTT, and prothrombinase-induced clotting time (PiCT) to varying degrees, and therefore, these tests have not been used clinically for monitoring. Apixaban has minimal effects on PT; therefore, anti-Xa levels are needed to assess serum concentrations.[19],[23]


   Role of Noacs in Clinical Practice Top


This topic is still hotly debated. However, when dealing with these drugs, it is important to keep the whole clinical scenario in mind. The schema presented by Shulman et al.,[24] as outlined below, is a very useful and easy guide to adapt in clinical practice. The choice of anticoagulants can be divided into several broad groups based on the patient's clinical scenario:

Group 1- Patient population where warfarin is a superior choice compared to NOACs

  • For patients already on warfarin with consistent INR results, there is little indication to switch to the newer drugs. For these patients, simply reducing the frequency of INR testing may improve the convenience and, hence, acceptability of warfarin treatment
  • Patients with poor compliance will face a higher risk of stroke with NOACs than with warfarin, particularly given the short half-lives of Dabigatran and Rivaroxaban, as failure to take the medication quickly results in loss of anticoagulation effect. Lack of a suitable lab monitoring test further compounds this problem
  • Patients with renal failure with creatinine clearance of less than 30 ml/min
  • Mechanical heart valve replacement: Valve thrombosis has been reported with Dabigatran [4]
  • Patients older than 75 years
  • History of GI disease, especially lower GI bleeds. Dabigatran contains tartaric acid necessary for its absorption and has a high concentration of the active drug in the colon
  • Drug cost: Although in many situations, NOACs may be cost neutral or even cost effective.


Group 2- NOACs are superior to warfarin

  • Patients with good compliance, but variable INR results. However, it is imperative that potential noncompliance is thoroughly evaluated and excluded
  • Drug interactions: If the patient is already taking medications that have the potential to interfere with warfarin metabolism (e.g., antibiotic therapy, chemotherapy, amiodarone, acetaminophen, etc.) or there is a future plan to introduce these drugs, NOACs may be superior to warfarin. The pharmocokinetices of these drugs are discussed in [Table 1].
  • Newly diagnosed atrial fibrillation with no contraindications as mentioned above. The advantage here is a relatively rapid onset of anticoagulation without heparin bridging. Frequent titration of dose with laboratory tests is not required with NOACs.


Group 3- Patients needing conversion from established warfarin to NOACs

Due to the potential for increased efficacy and reduced risk of intracranial bleed, some patients may be good candidates for conversion to NOAC therapy. One suggested protocol is to start NOACs only when INR has decreased below 2.3. Point-of-care INR monitors are also not used during transition, as Dabigatran may lead to elevated baseline INR.[15],[24],[25],[26]
Table 1: Summary of NOACs

Click here to view


Group 4- Conversion from NOACs to warfarin

For patients who are no longer candidates for NOACs, warfarin can be started as soon as these medications are stopped, with INR evaluated 3 or 4 days afterward. However, in patients with creatinine clearance of less than 15-30 ml/min, INR should be checked earlier to rule out excessive anticoagulation necessitating warfarin dose adjustment.[24]


   Pre-Procedural Management of Patients on Noacs Top


Preoperative

As always, close communication with patient's primary team managing the anticoagulation is necessary.

Elective procedures and low-risk interventions

In general, stopping NOACs 48 h prior to the procedure is adequate. This short period of interruption usually does not require bridging therapy with heparin or LMWH.

Urgent, but not emergent surgery

If possible, the procedure should be delayed by 12 h, as this is adequate time for metabolism.[5] Since the half-life is not dose dependent, this strategy is also applicable to NOAC overdose.

Emergency procedure

This will be discussed later in the management of bleeding secondary to NOACs.[24]


   Postoperative Management Top


In general, for low bleeding procedures, NOACs can be resumed in 24 h; in higher risk cases, they should be held for 48-72 h after surgery; in which case a heparin infusion should initially be used for anticoagulation. In cases where bowel paralysis is an issue, such as with post-gastrostomy placement, bridging with heparin may be needed, as patients cannot take oral medications.[24]


   Strategies to Manage Noac-Induced Bleeding Complications Top


General consideration and preventive measures

As Dabigatran, in particular, is dependent on renal function for its elimination, it is imperative that kidney function be reviewed before its initiation and prior to any interventional procedure; precautions must also be taken in patients with acute renal failure. The issue of acute renal failure is especially important in the post-procedure period, as the development of contrast-induced nephropathy or hypovolemic prerenal insufficiency can occur in patients with major bleeding.

We also recommend using commonly available laboratory tests. Although specific laboratory monitoring of NOACs is cumbersome, there are relatively simple initial steps that we can take in patients with acute hemorrhage. For instance, a normal thrombin time and aPTT implies that the bleeding diathesis is not due to Dabigatran. Similarly, a normal PT or undetectable anti-factor X activity excludes hemostatic dysfunction secondary to Rivaroxaban and Apixaban.


   Severe or Life-Threatening Hemorrhage Top


Monitoring of the patient's vitals signs and prompt resuscitation are paramount in the management of any acute life-threatening condition. If the source of hemorrhage can be determined and is endovascularly or surgically accessible, urgent intervention should be performed if appropriate. All anticoagulants should be discontinued until the source of hemorrhage is identified and bleeding has resolved.

If the bleeding is confirmed to be secondary to Dabigatran, hemodialysis can be done. Dialysis would not be effective for Rivaroxaban or Apixaban, as these drugs show up to 85% plasma protein binding.[27] The use of nonspecific pro-hemostatic agents will be discussed later.


   Nonspecific Hemostatic Agents Top


Recombinant factor VIIa

It works through generation of thrombin by activating factor X.[28],[29],[30],[31],[32],[33]

Four-factor prothrombin complex

It contains high concentrations of inactive forms of factors II, VII, IX, and X to stimulate thrombin formation.

Three-factor prothrombin complex

It is similar to four-factor complex; however, this formulation contains less inactive factor VII.

Activated prothrombin complex concentrate

It contains active factor VII, as opposed to the inactive form, as well as factors II, IX, and X. It combines the effects of recombinant factor VIIa and four-factor prothrombin complex.[28], 29, [34],[35],[36],[37],[38],[39]


   Conclusion Top


NOACs are an exciting addition to clinical practice as they provide a convenient and effective alternative to warfarin. As these agents have become more common, interventionalists will need to have a strong understanding of the drugs and how to manage the potential complications that may arise.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Direct Thrombin Inhibitor Trialists' Collaborative Group. Direct thrombin inhibitors in acute coronary syndromes: Principal results of a meta-analysis based on individual patients' data. Lancet 2002;359:294-302.  Back to cited text no. 1
    
2.
Hauptmann J, Stürzebecher J. Synthetic inhibitors of thrombin and factor Xa: From bench to bedside. Thromb Res 1999;93:203-41.  Back to cited text no. 2
    
3.
Gustafsson D, Elg M. The pharmacodynamics and pharmacokinetics of the oral direct thrombin inhibitor ximelagatran and its active metabolite melagatran: A mini-review. Thromb Res 2003;109(Suppl 1):S9-15.  Back to cited text no. 3
    
4.
Van de Werf F, Brueckmann M, Connolly SJ, Friedman J, Granger CB, Härtter S, et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: The Randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN). Am Heart J 2012;163:931-937.e1.  Back to cited text no. 4
    
5.
Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor xa inhibitors in development. Clin Pharmacokinet 2009;48:1-22.  Back to cited text no. 5
    
6.
Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, et al. Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001;119(Suppl):8-21S.  Back to cited text no. 6
    
7.
Holford NH. Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose-effect relationship. Clin Pharmacokinet 1986;11:483-504.  Back to cited text no. 7
    
8.
Tan G, Cohen H, Taylor F, Gabbay J. Audit of start of anticoagulation treatment in inpatients. J Clin Pathol 1993;46:67-71.  Back to cited text no. 8
    
9.
Vadher B, Patterson DL, Leaning M. Prediction of the international normalized ratio and maintenance dose during the initiation of warfarin therapy. Br J Clin Pharmacol 1999;48:63-70.  Back to cited text no. 9
    
10.
Garcia DA, Wallentin L, Lopes RD, Thomas L, Alexander JH, Hylek EM, et al. Apixaban versus warfarin in patients with atrial fibrillation according to prior warfarin use: Results from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation trial. Am Heart J 2013;166:549-58.  Back to cited text no. 10
    
11.
Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-92.  Back to cited text no. 11
    
12.
Bauersachs R, Berkowitz SD, Brenner B, Buller HR, Decousus H, Gallus AS, et al. EINSTEIN Investigators. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med 2010;363:2499-510.  Back to cited text no. 12
    
13.
Granger CB, Armaganijan LV. Newer oral anticoagulants should be used as first-line agents to prevent thromboembolism in patients with atrial fibrillation and risk factors for stroke or thromboembolism. Circulation 2012;125:159-64.  Back to cited text no. 13
    
14.
Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883-91.  Back to cited text no. 14
    
15.
Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51.  Back to cited text no. 15
    
16.
Schulman S, Kearon C, Kakkar AK, Mismetti P, Schellong S, Eriksson H, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 2009;361:2342-52.  Back to cited text no. 16
    
17.
Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ET. New oral anticoagulants increase risk for gastrointestinal bleeding: A systematic review and meta-analysis. Gastroenterology 2013;145:105-112.e15.  Back to cited text no. 17
    
18.
Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet 2008;47:285-95.  Back to cited text no. 18
    
19.
Mueck W, Eriksson BI, Bauer KA, Borris L, Dahl OE, Fisher WD, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban-an oral, direct factor Xa inhibitor--in patients undergoing major orthopaedic surgery. Clin Pharmacokinet 2008;47:203-16.  Back to cited text no. 19
    
20.
Stangier J, Rathgen K, Stähle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 2007;64:292-303.  Back to cited text no. 20
    
21.
Miyares MA, Davis K. Newer oral anticoagulants: A review of laboratory monitoring options and reversal agents in the hemorrhagic patient. Am J Health Syst Pharm 2012;69:1473-84.  Back to cited text no. 21
    
22.
Lange U, Nowak G, Bucha E. Ecarin chromogenic assay-a new method for quantitative determination of direct thrombin inhibitors like hirudin. Pathophysiol Haemost Thromb 2003;33:184-91.  Back to cited text no. 22
    
23.
Wong PC, Crain EJ, Xin B, Wexler RR, Lam PY, Pinto DJ, et al. Apixaban, an oral, direct and highly selective factor Xa inhibitor: In vitro, antithrombotic and antihemostatic studies. J Thromb Haemost 2008;6:820-9.  Back to cited text no. 23
    
24.
Schulman S, Crowther MA. How I treat with anticoagulants in 2012: New and old anticoagulants, and when and how to switch. Blood 2012;119:3016-23.  Back to cited text no. 24
    
25.
Schulman S, Kearon C, Kakkar AK, Schellong S, Eriksson H, Baanstra D, et al. RE-MEDY Trial Investigators; RE-SONATE Trial Investigators. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med 2013;368:709-18.  Back to cited text no. 25
    
26.
Schulman S; RE-MEDY; RE-SONATE Trial Investigators. Extended anticoagulation in venous thromboembolism. N Engl J Med 2013;368:2329.  Back to cited text no. 26
    
27.
Fawole A, Daw HA, Crowther MA. Practical management of bleeding due to the anticoagulants dabigatran, rivaroxaban, and apixaban. Cleve Clin J Med 2013;80:443-51.  Back to cited text no. 27
    
28.
Crowther MA, Warkentin TE. Managing bleeding in anticoagulated patients with a focus on novel therapeutic agents. J Thromb Haemost 2009;7(Suppl 1):107-10.  Back to cited text no. 28
    
29.
Levi M, Bijsterveld NR, Keller TT. Recombinant factor VIIa as an antidote for anticoagulant treatment. Semin Hematol 2004;41(Suppl 1):65-9.  Back to cited text no. 29
    
30.
Levi M, Peters M, Büller HR. Efficacy and safety of recombinant factor VIIa for treatment of severe bleeding: A systematic review. Crit Care Med 2005;33:883-90.  Back to cited text no. 30
    
31.
Ng HJ, Crowther MA. New anti-thrombotic agents: Emphasis on hemorrhagic complications and their management. Semin Hematol 2006;43(Suppl 1):S77-83.  Back to cited text no. 31
    
32.
Wittkowsky AK. New oral anticoagulants: A practical guide for clinicians. J Thromb Thrombolysis 2010;29:182-91.  Back to cited text no. 32
    
33.
Friederich PW, Levi M, Bauer KA, Vlasuk GP, Rote WE, Breederveld D, et al. Ability of recombinant factor VIIa to generate thrombin during inhibition of tissue factor in human subjects. Circulation 2001;103:2555-9.  Back to cited text no. 33
    
34.
Bernstein RA, Alberts MJ, Garcia DA. Letter by Bernstein et al. regarding article, "reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: A randomized, placebo-controlled, crossover study in healthy subjects. Circulation 2012;125:e616.  Back to cited text no. 34
    
35.
Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: A randomized, placebo-controlled, crossover study in healthy subjects. Circulation 2011;124:1573-9.  Back to cited text no. 35
    
36.
Holland L, Warkentin TE, Refaai M, Crowther MA, Johnston MA, Sarode R. Suboptimal effect of a three-factor prothrombin complex concentrate (Profilnine-SD) in correcting supratherapeutic international normalized ratio due to warfarin overdose. Transfusion 2009;49:1171-7.  Back to cited text no. 36
    
37.
Kaatz S, Kouides PA, Garcia DA, Spyropolous AC, Crowther M, Douketis JD, et al. Guidance on the emergent reversal of oral thrombin and factor Xa inhibitors. Am J Hematol 2012;87(Suppl 1):S141-5.  Back to cited text no. 37
    
38.
Marlu R, Hodaj E, Paris A, Albaladejo P, Cracowski JL, Pernod G. Effect of non-specific reversal agents on anticoagulant activity of dabigatran and rivaroxaban: A randomised crossover ex vivo study in healthy volunteers. Thromb Haemost 2012;108:217-24.  Back to cited text no. 38
    
39.
Siegal DM, Cuker A. Reversal of novel oral anticoagulants in patients with major bleeding. J Thromb Thrombolysis 2013;35:391-8.  Back to cited text no. 39
    

Top
Correspondence Address:
Sandeep T Laroia
200 Hawkins Drive, 3957 JPP. Iowa City Iowa 52242, Iowa City, Iowa
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-3026.169459

Rights and Permissions


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
 
 
  Search
 
   Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Current Noacs
   Mechanism of Action
    Advantages of No...
   Limitations
   Pharmacokinetics
   Drug Interactions
    Challenges of Us...
    Laboratory Evalu...
    Role of Noacs in...
    Pre-Procedural M...
    Postoperative Ma...
    Strategies to Ma...
    Severe or Life-T...
    Nonspecific Hemo...
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2582    
    Printed49    
    Emailed1    
    PDF Downloaded269    
    Comments [Add]    

Recommend this journal