Indian Journal of Radiology Indian Journal of Radiology  

   Login   | Users online: 1388

Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size     

 

 Table of Contents    
NEURORADIOLOGY  
Year : 2011  |  Volume : 21  |  Issue : 3  |  Page : 228-230
Case Report: Floating fat globule within an arachnoid cyst


1 Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
2 Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India

Click here for correspondence address and email

Date of Web Publication24-Sep-2011
 

   Abstract 

Intralesional floating fat globules have been reported in cystic lesions such as teratoma of the ovary and dermoid of the head and neck but not within intracranial lesions. Fat globules dispersed within the subarachnoid space are a known imaging finding of ruptured intracranial dermoid. We report a unique case of an intralesional solitary floating fat globule within a multicompartmental arachnoid cyst, with varying locations on serial imaging. We also put forward a hypothesis for the pathogenesis of fat within an arachnoid cyst. To the best of our knowledge, this is the first such report in the literature.

Keywords: Arachnoid cyst; intralesional fat; magnetic resonance imaging

How to cite this article:
Sudhir J, Gopalakrishnan CV, Prabhu S, Chinchure S. Case Report: Floating fat globule within an arachnoid cyst. Indian J Radiol Imaging 2011;21:228-30

How to cite this URL:
Sudhir J, Gopalakrishnan CV, Prabhu S, Chinchure S. Case Report: Floating fat globule within an arachnoid cyst. Indian J Radiol Imaging [serial online] 2011 [cited 2019 Sep 19];21:228-30. Available from: http://www.ijri.org/text.asp?2011/21/3/228/85374

   Introduction Top


Intracranial arachnoid cysts are benign CSF filled, congenital, intra-arachnoidal space-occupying lesions that represent 1% of all intracranial lesions. They occasionally become symptomatic with advancing age. On imaging, the cyst typically has the same signal intensity as CSF in all sequences. We report an unusual case of a floating fat globule within a multi-compartmental suprasellar arachnoid cyst and discuss its possible etiopathogenesis.


   Case Report Top


A 29-year-old woman presented with a 1-year history of frontal headache not associated with features of raised intracranial pressure. She had been managed medically at a local hospital. MRI of the brain done at the onset of headache revealed a multicompartmental cystic lesion occupying the suprasellar region and extending to both Sylvian fissures. The lesion was hypointense on T1W and hyperintense on T2W images and fluid-attenuated inversion-recovery (FLAIR) imaging, with no enhancement on gadolinium injection [Figure 1]A-C and F. There was no restriction on diffusion-weighted imaging [Figure 1]D and E. A focal, well-defined intralesional differential signal intensity, showing T1 shortening and intermediate signal on T2W images, was seen in the right Sylvian fissure [Figure 2]A and B. Blooming on susceptibility-weighted imaging (SWI) and suppression on fat-saturated images suggested the possibility of a fat globule [Figure 2]C and D. Because the patient was not willing for any surgical procedure, she was managed symptomatically.
Figure 1 (A-F): Axial T1W MRI image (A) shows a homogenously hypointense cystic lesion (arrow) in the suprasellar cistern, extending posteriorly to the interpeduncular cistern and laterally to both Sylvian fissures. It is hyperintense (arrows) on T2W (B) and FLAIR (C) images. There is no restriction on diffusion (arrows in D and E). The cyst does not show enhancement on a post-contrast T1W image (F)

Click here to view


Ten months later, in view of worsening headache, she was re-evaluated by CT scan. Noncontrast CT scan revealed an iso-hyperdense lesion in the same location with the fat globule seen (hypodensity) in the suprasellar cistern [Figure 3]. Repeat MRI after 1 month showed suppression of the cyst contents on FLAIR imaging [Figure 4]C and a shift in the position of the intracystic nodule to the left anterior temporal region [Figure 4]A and B. Due to failure to control the headache with medication, the patient was taken up for decompression of the lesion. At surgery, a cerebrospinal fluid (CSF)-containing cyst with a transparent membrane was seen. The cyst collapsed on incision, revealing a yellowish, soft globule lying free within it [Figure 5]. Histopathological examination revealed flattened arachnoid cells lining a fibrocollagenous membrane, consistent with a diagnosis of arachnoid cyst [Figure 6]. Analysis of the intralesional nodule confirmed the presence of fat globules.
Figure 2 (A-D): Axial T1W MRI image (A) shows a hyperintense intracystic nodule with intermediate signal intensity on a T2W image (B). Blooming is seen on an axial susceptibility-weighted image (C). The hyperintense signal is suppressed completely on T1W fat-saturated spin-echo image (D). The arrows in the images indicate the nodule

Click here to view
Figure 3 (A,B): Plain axial CT scans show an iso-hyperdense cystic lesion with suprasellar fat density. Note the change in position of the fat globule (arrow)

Click here to view
Figure 4 (A-C): Axial T1W MRI (A) and T2W MRI (B) images show the changed position of the fat globule (arrow), now situated in the left anterior temporal region. Coronal FLAIR MRI imagte (C) shows suppression of the cyst contents (arrow)

Click here to view
Figure 5 (A-B): Intraoperative photographs demonstrate the arachnoid membrane (arrow in A) and the intralesional fat globule (arrow in B)

Click here to view
Figure 6: Photomicrograph shows the cyst wall lined by cuboidal to flattened meningothelial cells (arrow) over a layer of fibrocollagenous tissue (H and E, ×400)

Click here to view



   Discussion Top


Arachnoid cysts are benign, congenital, intra-arachnoidal space-occupying lesions that are filled with clear CSF. They tend to be unilocular, smoothly marginated expansile lesions and are molded by the surrounding structures. Intracranial arachnoid cysts represent 1% of all intracranial lesions. [1] About 50%-60% are found in the middle cranial fossa; other locations include the suprasellar cistern and posterior fossa (10%), where they occur most commonly in the cerebellopontine angle cistern. Less common locations are within the interhemispheric fissure, over the cerebral convexity, in the cisterna magna, quadrigeminal cistern, and choroidal fissure. [2],[3],[4],[5]

The precise mechanism for the formation of arachnoid cysts is not known. [2],[5] It is possible that they are secondary to "splitting" of the developing arachnoid. A newer concept for the middle fossa arachnoid cyst is failure of the temporal embryonic meninges to merge as the Sylvian fissure forms. These two layers remain separate, forming a duplicate arachnoid. Other mechanisms might include active fluid secretion by the cyst wall, slow distention by CSF pulsations, or one-way ball-valve flow of CSF.

Although most arachnoid cysts remain stable with advancing age, they can sometimes become symptomatic due to cyst enlargement or hemorrhage. Hemorrhage may occur not only in the cyst but also in the subdural or extradural spaces. [6],[7] A vascular membrane with bridging veins may explain the propensity for intracystic hemorrhage. Previous/chronic minor intracystic blood leakage may be responsible for the hyperdensity visualized on CT scan.

The classic arachnoid cyst has no identifiable internal architecture and does not enhance. The cyst typically has the same signal intensity as CSF on all sequences. Occasionally, however, hemorrhage, high protein content, or lack of flow within the cyst may complicate the MRI appearance. In our patient, there was a change in the MRI characteristics of the lesion on repeat imaging, suggesting the possibility of a cystic lesion with varying protein content, e.g., neuroepithelial cyst, dermoid cyst, or colloid-like cyst. In view of the lack of restriction on diffusion-weighted imaging, we did not consider the possibility of an epidermoid cyst. The presence of a freely mobile globule within the lesion precluded the diagnosis of an arachnoid cyst. The intralesional nodule demonstrated high signal on T1W and intermediate signal on T2W, which was suggestive of fat/cholesterol or proteinaceous material. [8] In view of the suppression on T1W fat-saturated imaging, the diagnosis of fat globule was considered preoperatively. This intralesional nodule also showed blooming on SWI. The reason for blooming is not exactly known; however, exaggerated chemical shift artifact appears less likely, as the hypointensity was not uniform and not at the edges. There have been brief reports recently mentioning hypointensity of fat on SWI [9],[10] although the exact reason has not been discussed. The presence of fat within arachnoid cysts has not been reported in the literature. Microscopically, the arachnoid cyst wall is made up of a vascular collagenous membrane lined by flattened arachnoid cells. Arachnoid cysts lack a glial-limiting membrane or an epithelial lining. Rarely, choroid plexus-like tissue has been reported in the walls of arachnoid cysts, which supports their maldevelopmental origin. [11],[12],[13]

In conclusion, we report the first case of an arachnoid cyst with a mobile fat globule within it. This possibly represents a dual congenital maldevelopment resulting in the formation of an arachnoid cyst and intracranial fat globule.

 
   References Top

1.Akyuz M, Goksu E, Aralasmak A, Tuncer R. Retroclival arachnoid cyst presenting with haemorrhage: A brief report of a special case. Acta Neurochir (Wien) 2010;152:161-2.   Back to cited text no. 1
    
2.Burger PC, Scheithauer BW, Vogel FS. Intracranial meninges. In: Surgical pathology of the brain and its coverings. 4 th ed. Philadelphia, PA: Churchill Livingstone; 2002. p. 89-93.  Back to cited text no. 2
    
3.McLendon RE, Tien RD. Tumors and tumorlike lesions of maldevelopmental origin. In: Russell and Rubinstein's pathology of tumors of the nervous system. 6 th ed. New York, NY: Oxford University Press; 1998. p. 327-52.  Back to cited text no. 3
    
4.Osborn AG. Arachnoid cyst. In: Diagnostic imaging: Brain. Salt Lake City, Utah: Amirsys; 2004. p. I-7-4.  Back to cited text no. 4
    
5.Osborn AG. Miscellaneous tumors, cysts, and metastases. In: Diagnostic neuroradiology. St Louis, MO: Mosby; 1994. p. 631-49.  Back to cited text no. 5
    
6.Iaconetta G, Esposito M, Maiuri F, Cappabianca P. Arachnoid cyst with intracystic haemorrhage and subdural haematoma: Case report and literature review. Neurol Sci 2006;26:451-5.  Back to cited text no. 6
    
7.Ulmer S, Engellandt K, Stiller U, Nabavi A, Jansen O, Mehdorn MH. Chronic subdural hemorrhage into a giant arachnoidal cyst (Galassi classification type III). J Comput Assist Tomogr 2002;26:647-53.  Back to cited text no. 7
    
8.Warakaulle DR, Anslow P. Differential diagnosis of intracranial lesions with high signal on T1 or low signal on T2-weighted MRI. Clin Radiol 2003;58:922-33.  Back to cited text no. 8
    
9.Robinson RJ, Bhuta S. Susceptibility-Weighted Imaging of the Brain: Current utility and potential applications. J Neuroimaging 2011;20:1-16.  Back to cited text no. 9
    
10.De Champfleur NM, Langlois C, Ankenbrandt WJ, Le Bars E, Leroy MA, Duffau H, et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery 2011;68:641-7; discussion 647-8.  Back to cited text no. 10
    
11.Lewis AJ. Infantile hydrocephalus caused by arachnoid cyst. J Neurosurg 1962;19:431-4.  Back to cited text no. 11
    
12.Little JR, Gomez MR, MacCarty CS. Infratentorial arachnoid cysts. J Neurosurg 1973;39:380-6.  Back to cited text no. 12
    
13.Rosich-Pla A, Smith BH, Sil R. Congenital arachnoid cyst with unusual clinical, radiological, and pathological findings. Ann Neurol 1977;2:443-6.  Back to cited text no. 13
    

Top
Correspondence Address:
Chittur Viswanathan Gopalakrishnan
Department of Neurosurgery, SCTIMST, Trivandrum - 695 011
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-3026.85374

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]

This article has been cited by
1 Susceptibility Artifacts in Ruptured Intracranial Dermoid Cysts: A Poorly Understood but Important Phenomenon
Shashank Sood,Rajiv Gupta
The Neuroradiology Journal. 2014; 27: 0
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
   Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
   Case Report
   Discussion
    References
    Article Figures

 Article Access Statistics
    Viewed5700    
    Printed124    
    Emailed0    
    PDF Downloaded402    
    Comments [Add]    
    Cited by others 1    

Recommend this journal